skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bond, Howard E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. During our spectroscopic survey of central stars of faint planetary nebulae (PNe), we found that the nucleus of Abell 57 exhibits strong nebular emission lines. Using synthetic narrowband images, we show that the emission arises from an unresolved compact emission knot (CEK) coinciding with the hot (90,000 K) central star. Thus Abell 57 belongs to the rare class of “EGB 6-type” PNe, characterized by dense emission cores. Photometric data show that the nucleus exhibits a near-infrared excess, due to a dusty companion body with the luminosity of an M0 dwarf but a temperature of ∼1800 K. Emission-line analysis reveals that the CEK is remarkably dense (electron density ∼ 1.6 × 10^7 cm^{−3}), and has a radius of only ∼4.5 au. The CEK suffers considerably more reddening than the central star, which itself is more reddened than the surrounding PN. These puzzles may suggest an interaction between the knot and central star; however, Hubble Space Telescope imaging of EGB 6 itself shows that its CEK lies more than ∼125 au from the PN nucleus. We discuss a scenario in which a portion of the asymptotic giant branch wind that created the PN was captured into a dust cloud around a distant stellar companion; this cloud has survived to the present epoch, and has an atmosphere photoionized by radiation from the hot central star. However, in this picture EGB 6-type nuclei should be relatively common, yet they are actually extremely rare; thus they may arise from a different transitory phenomenon. We suggest future observations of Abell 57 that may help unravel its mysteries. 
    more » « less
  2. Abstract The 30 yr orbit of the Cepheid Polaris has been followed with observations by the Center for High Angular Resolution Astronomy (CHARA) Array from 2016 through 2021. An additional measurement has been made with speckle interferometry at the Apache Point Observatory. Detection of the companion is complicated by its comparative faintness—an extreme flux ratio. Angular diameter measurements appear to show some variation with pulsation phase. Astrometric positions of the companion were measured with a custom grid-based model-fitting procedure and confirmed with the CANDID software. These positions were combined with the extensive radial velocities (RVs) discussed by Torres to fit an orbit. Because of the imbalance of the sizes of the astrometry and RV data sets, several methods of weighting are discussed. The resulting mass of the Cepheid is 5.13 ± 0.28M. Because of the comparatively large eccentricity of the orbit (0.63), the mass derived is sensitive to the value found for the eccentricity. The mass combined with the distance shows that the Cepheid is more luminous than predicted for this mass from evolutionary tracks. The identification of surface spots is discussed. This would give credence to the identification of a radial velocity variation with a period of approximately 120 days as a rotation period. Polaris has some unusual properties (rapid period change, a phase jump, variable amplitude, and unusual polarization). However, a pulsation scenario involving pulsation mode, orbital periastron passage, and low pulsation amplitude can explain these characteristics within the framework of pulsation seen in Cepheids. 
    more » « less
  3. Abstract We use the results of a survey for low-surface-gravity stars in Galactic (and LMC) globular clusters to show that “yellow” post-asymptotic-branch (yPAGB) stars are likely to be excellent extragalactic standard candles, capable of producing distances to early-type galaxies that are accurate to a couple of percent. We show that the mean bolometric magnitude of the 10 yPAGB stars in globular clusters is 〈 M bol 〉 = −3.38 ± 0.03, a value that is ∼0.2 mag brighter than that predicted from the latest post-horizontal-branch evolutionary tracks. More importantly, we show that the observed dispersion in the distribution is only 0.10 mag, i.e., better than the scatter for individual Cepheids. We describe the physics that can produce such a small dispersion and show that, if one restricts surveys to the color range 0.0 ≲ ( B − V ) 0 ≲ 0.5, then samples of nonvariable yPAGB stars can be identified quite easily with a minimum of contamination. The extremely bright absolute V magnitudes of these stars (〈 M V 〉 = −3.37) make them, by far, the visually brightest objects in old stellar populations and ideal Population II standard candles for measurements out to ∼10 Mpc with current instrumentation. A Hubble Space Telescope survey in the halos of galaxies in the M81 and Sculptor groups could therefore serve as an effective cross-check on both the Cepheid and tip-of-the-red-giant-branch distance scales. 
    more » « less
  4. Abstract We have carried out a search for above-horizontal-branch (AHB) stars—objects lying above the horizontal branch (HB) and blueward of the asymptotic giant branch (AGB) in the color–magnitude diagram—in 97 Galactic and seven Magellanic Cloud globular clusters (GCs). We selected AHB candidates based on photometry in the uBVI system, which is optimized for detection of low-surface-gravity stars with large Balmer jumps, in the color range −0.05 ≤ ( B − V ) 0 ≤1.0. We then used Gaia astrometry and Gaussian-mixture modeling to confirm cluster membership and remove field interlopers. Our final catalog contains 438 AHB stars, classified and interpreted in the context of post-HB evolution as follows: (1) AHB1: 280 stars fainter than M V = −0.8, evolving redward from the blue HB (BHB) toward the base of the AGB. (2) Post-AGB (PAGB): 13 stars brighter than M V ≃ −2.75, departing from the top of the AGB and evolving rapidly blueward. (3) AHB2: 145 stars, with absolute magnitudes between those of the AHB1 and PAGB groups. This last category includes a mixture of objects leaving the extreme BHB and evolving toward the AGB, and brighter ones moving back from the AGB toward higher temperatures. Among the AHB1 stars are 59 RR Lyrae interlopers, observed by chance in our survey near maximum light. PAGB and AHB2 stars (including W Virginis Cepheids) overwhelmingly belong to GCs containing BHB stars, in accordance with predictions of post-HB evolutionary tracks. We suggest that most W Vir variables are evolving toward lower temperatures and are in their first crossings of the instability strip. Nonvariable yellow PAGB stars show promise as a Population II standard candle for distance measurement. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)